Extensions 1→N→G→Q→1 with N=C32 and Q=C3×SD16

Direct product G=N×Q with N=C32 and Q=C3×SD16
dρLabelID
SD16×C33216SD16xC3^3432,518

Semidirect products G=N:Q with N=C32 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×SD16) = C3×AΓL1(𝔽9)φ: C3×SD16/C3SD16 ⊆ Aut C32248C3^2:(C3xSD16)432,737
C322(C3×SD16) = C3×C322SD16φ: C3×SD16/C6D4 ⊆ Aut C32244C3^2:2(C3xSD16)432,577
C323(C3×SD16) = He36SD16φ: C3×SD16/C8C6 ⊆ Aut C32726C3^2:3(C3xSD16)432,117
C324(C3×SD16) = He38SD16φ: C3×SD16/D4C6 ⊆ Aut C327212-C3^2:4(C3xSD16)432,152
C325(C3×SD16) = He310SD16φ: C3×SD16/Q8C6 ⊆ Aut C327212+C3^2:5(C3xSD16)432,161
C326(C3×SD16) = C3×Dic6⋊S3φ: C3×SD16/C12C22 ⊆ Aut C32484C3^2:6(C3xSD16)432,420
C327(C3×SD16) = C3×D12.S3φ: C3×SD16/C12C22 ⊆ Aut C32484C3^2:7(C3xSD16)432,421
C328(C3×SD16) = C3×C325SD16φ: C3×SD16/C12C22 ⊆ Aut C32484C3^2:8(C3xSD16)432,422
C329(C3×SD16) = SD16×He3φ: C3×SD16/SD16C3 ⊆ Aut C32726C3^2:9(C3xSD16)432,219
C3210(C3×SD16) = C32×C24⋊C2φ: C3×SD16/C24C2 ⊆ Aut C32144C3^2:10(C3xSD16)432,466
C3211(C3×SD16) = C3×C242S3φ: C3×SD16/C24C2 ⊆ Aut C32144C3^2:11(C3xSD16)432,482
C3212(C3×SD16) = C32×D4.S3φ: C3×SD16/C3×D4C2 ⊆ Aut C3272C3^2:12(C3xSD16)432,476
C3213(C3×SD16) = C3×C329SD16φ: C3×SD16/C3×D4C2 ⊆ Aut C3272C3^2:13(C3xSD16)432,492
C3214(C3×SD16) = C32×Q82S3φ: C3×SD16/C3×Q8C2 ⊆ Aut C32144C3^2:14(C3xSD16)432,477
C3215(C3×SD16) = C3×C3211SD16φ: C3×SD16/C3×Q8C2 ⊆ Aut C32144C3^2:15(C3xSD16)432,493

Non-split extensions G=N.Q with N=C32 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C32.(C3×SD16) = SD16×3- 1+2φ: C3×SD16/SD16C3 ⊆ Aut C32726C3^2.(C3xSD16)432,220
C32.2(C3×SD16) = C9×C24⋊C2φ: C3×SD16/C24C2 ⊆ Aut C321442C3^2.2(C3xSD16)432,111
C32.3(C3×SD16) = C9×D4.S3φ: C3×SD16/C3×D4C2 ⊆ Aut C32724C3^2.3(C3xSD16)432,151
C32.4(C3×SD16) = C9×Q82S3φ: C3×SD16/C3×Q8C2 ⊆ Aut C321444C3^2.4(C3xSD16)432,158
C32.5(C3×SD16) = SD16×C3×C9central extension (φ=1)216C3^2.5(C3xSD16)432,218

׿
×
𝔽